

ROBERT A. ADAMS CHRISTOPHER ESSEX

Calculus
 A Complete Course

NINTH EDITION

Calculus A Complete Course NINTH EDITION

This page intentionally left blank

ROBERT A. ADAMS

University of British Columbia

CHRISTOPHER ESSEX

University of Western Ontario

Calculus

A Complete Course
NINTH EDITION

Editorial Director: Claudine O'Donnell
Acquisitions Editor: Claudine O'Donnell
Marketing Manager: Euan White
Program Manager: Kamilah Reid-Burrell
Project Manager: Susan Johnson
Production Editor: Leanne Rancourt
Manager of Content Development: Suzanne Schaan
Developmental Editor: Charlotte Morrison-Reed
Media Editor: Charlotte Morrison-Reed

Media Developer: Kelli Cadet
Compositor: Robert Adams
Preflight Services: Cenveo ${ }^{\circledR}$ Publisher Services
Permissions Project Manager: Joanne Tang
Interior Designer: Anthony Leung
Cover Designer: Anthony Leung
Cover Image: © Hiroshi Watanabe / Getty Images
Vice-President, Cross Media and Publishing Services:
Gary Bennett

Pearson Canada Inc., 26 Prince Andrew Place, Don Mills, Ontario M3C 2 T8.
Copyright © 2018, 2013, 2010 Pearson Canada Inc. All rights reserved.
Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts, please contact Pearson Canada's Rights and Permissions Department by visiting www. pearsoncanada.ca/contact-information/permissions-requests.

Attributions of third-party content appear on the appropriate page within the text.
PEARSON is an exclusive trademark owned by Pearson Canada Inc. or its affiliates in Canada and/or other countries.
Unless otherwise indicated herein, any third party trademarks that may appear in this work are the property of their respective owners and any references to third party trademarks, logos, or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson Canada products by the owners of such marks, or any relationship between the owner and Pearson Canada or its affiliates, authors, licensees, or distributors.

ISBN 978-0-13-415436-7
10987654321

Library and Archives Canada Cataloguing in Publication

Adams, Robert A. (Robert Alexander), 1940-, author
Calculus : a complete course / Robert A. Adams, Christopher
Essex. -- Ninth edition.
Includes index.
ISBN 978-0-13-415436-7 (hardback)

1. Calculus--Textbooks. I. Essex, Christopher, author II. Title.

To Noreen and Sheran

This page intentionally left blank

Contents

Preface XV
To the Student xvii
To the Instructor xviii
Acknowledgments xix
What Is Calculus? 1
P Preliminaries 3
P. 1 Real Numbers and the Real Line 3
Intervals 5
The Absolute Value 8
Equations and Inequalities Involving 9
Absolute Values
P. 2 Cartesian Coordinates in the Plane 11
Axis Scales 11
Increments and Distances 12
Graphs 13
Straight Lines 13
Equations of Lines 15
P. 3 Graphs of Quadratic Equations 17
Circles and Disks 17
Equations of Parabolas 19
Reflective Properties of Parabolas 20
Scaling a Graph 20
Shifting a Graph 20
Ellipses and Hyperbolas 21
P. 4 Functions and Their Graphs 23
The Domain Convention 25
Graphs of Functions 26
Even and Odd Functions; Symmetry and 28
Reflections
Reflections in Straight Lines 29
Defining and Graphing Functions with 30 Maple
P. 5 Combining Functions to Make New 33
Functions
Sums, Differences, Products, Quotients, 33and Multiples
Composite Functions 35
Piecewise Defined Functions 36
P. 6 Polynomials and Rational Functions 39
Roots, Zeros, and Factors 41
Roots and Factors of Quadratic 42
Polynomials
Miscellaneous Factorings 44
P. 7 The Trigonometric Functions 46
Some Useful Identities 48
Some Special Angles 49
The Addition Formulas 51
Other Trigonometric Functions 53
Maple Calculations 54
Trigonometry Review 55
1 Limits and Continuity 59
1.1 Examples of Velocity, Growth Rate, and 59 Area
Average Velocity and Instantaneous 59
Velocity
The Growth of an Algal Culture 61
The Area of a Circle 62
1.2 Limits of Functions 64
One-Sided Limits 68
Rules for Calculating Limits 69
The Squeeze Theorem 69
1.3 Limits at Infinity and Infinite Limits 73
Limits at Infinity 73
Limits at Infinity for Rational Functions 74
Infinite Limits 75
Using Maple to Calculate Limits 77
1.4 Continuity 79
Continuity at a Point 79
Continuity on an Interval 81
There Are Lots of Continuous Functions 81
Continuous Extensions and Removable 82
Discontinuities
Continuous Functions on Closed, Finite 83
Intervals
Finding Roots of Equations 85
1.5 The Formal Definition of Limit 88
Using the Definition of Limit to Prove 90
Theorems
Other Kinds of Limits 90
Chapter Review 93
2 Differentiation 95
2.1 Tangent Lines and Their Slopes 95
Normals 99
2.2 The Derivative 100
Some Important Derivatives 102
Leibniz Notation 104
Differentials 106
Derivatives Have the Intermediate-Value 107
Property
2.3 Differentiation Rules 108
Sums and Constant Multiples 109
The Product Rule 110
The Reciprocal Rule 112
The Quotient Rule 113
2.4 The Chain Rule 116
Finding Derivatives with Maple 119
Building the Chain Rule into Differentiation 119
Formulas
Proof of the Chain Rule (Theorem 6) 120
2.5 Derivatives of Trigonometric Functions 121
Some Special Limits 121
The Derivatives of Sine and Cosine 123
The Derivatives of the Other Trigonometric 125
Functions
2.6 Higher-Order Derivatives 127
2.7 Using Differentials and Derivatives 131
Approximating Small Changes 131
Average and Instantaneous Rates of 133
Change
Sensitivity to Change 134
Derivatives in Economics 135
2.8 The Mean-Value Theorem 138
Increasing and Decreasing Functions 140
Proof of the Mean-Value Theorem 142
2.9 Implicit Differentiation 145
Higher-Order Derivatives 148
The General Power Rule 149
2.10 Antiderivatives and Initial-Value Problems 150
Antiderivatives 150
The Indefinite Integral 151
Differential Equations and Initial-Value 153
Problems
2.11 Velocity and Acceleration 156
Velocity and Speed 156
Acceleration 157
Falling Under Gravity 160
Chapter Review 163
3 Transcendental Functions 166
3.1 Inverse Functions 166
Inverting Non-One-to-One Functions 170
Derivatives of Inverse Functions 170
3.2 Exponential and Logarithmic Functions 172
Exponentials 172
Logarithms 173
3.3 The Natural Logarithm and Exponential 176
The Natural Logarithm 176
The Exponential Function 179
General Exponentials and Logarithms 181
Logarithmic Differentiation 182
3.4 Growth and Decay 185
The Growth of Exponentials and 185
Logarithms
Exponential Growth and Decay Models 186
Interest on Investments 188
Logistic Growth 190
3.5 The Inverse Trigonometric Functions 192
The Inverse Sine (or Arcsine) Function 192
The Inverse Tangent (or Arctangent) 195
Function
Other Inverse Trigonometric Functions 197
3.6 Hyperbolic Functions 200
Inverse Hyperbolic Functions 203
3.7 Second-Order Linear DEs with Constant 206 Coefficients
Recipe for Solving ay" $+b y^{\prime}+c y=0$ 206
Simple Harmonic Motion 209
Damped Harmonic Motion 212
Chapter Review 213
4 More Applications of 216 Differentiation
4.1 Related Rates 216
Procedures for Related-Rates Problems 217
4.2 Finding Roots of Equations 222
Discrete Maps and Fixed-Point Iteration 223
Newton's Method 225
"Solve" Routines 229
4.3 Indeterminate Forms 230
l'Hopital's Rules 231
4.4 Extreme Values 236
Maximum and Minimum Values 236
Critical Points, Singular Points, and 237
Endpoints
Finding Absolute Extreme Values 238
The First Derivative Test 238
Functions Not Defined on Closed, Finite 240
Intervals
4.5 Concavity and Inflections 242
The Second Derivative Test 245
4.6 Sketching the Graph of a Function 248
Asymptotes 247
Examples of Formal Curve Sketching 251
4.7 Graphing with Computers 256
Numerical Monsters and Computer 256
Graphing
Floating-Point Representation of Numbers 257
in Computers
Machine Epsilon and Its Effect on 259
Figure 4.45
Determining Machine Epsilon 260
4.8 Extreme-Value Problems 261
Procedure for Solving Extreme-Value 263
4.9 Linear Approximations 269
Approximating Values of Functions 270
Error Analysis 271
4.10 Taylor Polynomials 275
Taylor's Formula 277
Big-O Notation 280
Evaluating Limits of Indeterminate Forms 282
4.11 Roundoff Error, Truncation Error, and 284 Computers
Taylor Polynomials in Maple 284
Persistent Roundoff Error 285
Truncation, Roundoff, and Computer 286
Algebra
Chapter Review 287
5 Integration 291
5.1 Sums and Sigma Notation 291
Evaluating Sums 293
5.2 Areas as Limits of Sums 296
The Basic Area Problem 297
Some Area Calculations 298
5.3 The Definite Integral 302
Partitions and Riemann Sums 302
The Definite Integral 303
General Riemann Sums 305
5.4 Properties of the Definite Integral 307
A Mean-Value Theorem for Integrals 310
Definite Integrals of Piecewise Continuous 311
Functions
5.5 The Fundamental Theorem of Calculus 313
5.6 The Method of Substitution 319
Trigonometric Integrals 323
5.7 Areas of Plane Regions 327
Areas Between Two Curves 328
Chapter Review 331
6 Techniques of Integration 334
6.1 Integration by Parts 334
Reduction Formulas 338
6.2 Integrals of Rational Functions 340
Linear and Quadratic Denominators 341
Partial Fractions 343
Completing the Square 345
Denominators with Repeated Factors 346
6.3 Inverse Substitutions 349
The Inverse Trigonometric Substitutions 349
Inverse Hyperbolic Substitutions 352
Other Inverse Substitutions 353
The $\tan (\theta / 2)$ Substitution 354
6.4 Other Methods for Evaluating Integrals 356
The Method of Undetermined Coefficients 357
Using Maple for Integration 359
Using Integral Tables 360
Special Functions Arising from Integrals 361
6.5 Improper Integrals 363
Improper Integrals of Type I 363
Improper Integrals of Type II 365
Estimating Convergence and Divergence 368
6.6 The Trapezoid and Midpoint Rules 371
The Trapezoid Rule 372
The Midpoint Rule 374
Error Estimates 375
6.7 Simpson's Rule 378
6.8 Other Aspects of Approximate Integration 382
Approximating Improper Integrals 383
Using Taylor's Formula 383
Romberg Integration 384
The Importance of Higher-Order Methods 387
Other Methods 388
Chapter Review 389
7 Applications of Integration 393
7.1 Volumes by Slicing—Solids of Revolution 393
Volumes by Slicing 394
Solids of Revolution 395
Cylindrical Shells 398
7.2 More Volumes by Slicing 402
7.3 Arc Length and Surface Area 406
Arc Length 406
The Arc Length of the Graph of a 407
Function
Areas of Surfaces of Revolution 410
7.4 Mass, Moments, and Centre of Mass 413
Mass and Density 413
Moments and Centres of Mass 416
Two- and Three-Dimensional Examples 417
7.5 Centroids 420
Pappus's Theorem 423
7.6 Other Physical Applications 425
Hydrostatic Pressure 426
Work 427
Potential Energy and Kinetic Energy 430
7.7 Applications in Business, Finance, and 432 Ecology
The Present Value of a Stream of 433
Payments
The Economics of Exploiting Renewable 433
Resources
7.8 Probability 436
Discrete Random Variables 437
Expectation, Mean, Variance, and 438
Standard Deviation
Continuous Random Variables 440
The Normal Distribution 444
Heavy Tails 447
7.9 First-Order Differential Equations 450
Separable Equations 450
First-Order Linear Equations 454
Chapter Review 458
8 Conics, Parametric Curves, 462 and Polar Curves
8.1 Conics 462
Parabolas 463
The Focal Property of a Parabola 464
Ellipses 465
The Focal Property of an Ellipse 466
The Directrices of an Ellipse 467
Hyperbolas 467
The Focal Property of a Hyperbola 469
Classifying General Conics 470
8.2 Parametric Curves 473
General Plane Curves and Parametrizations 475
Some Interesting Plane Curves 476
8.3 Smooth Parametric Curves and Their 479 Slopes
The Slope of a Parametric Curve 480
Sketching Parametric Curves 482
8.4 Arc Lengths and Areas for Parametric 483
Curves
Arc Lengths and Surface Areas 483
Areas Bounded by Parametric Curves 485
8.5 Polar Coordinates and Polar Curves 487
Some Polar Curves 489
Intersections of Polar Curves 492
Polar Conics 492
8.6 Slopes, Areas, and Arc Lengths for Polar 494
Curves
Areas Bounded by Polar Curves 496
Arc Lengths for Polar Curves 497
Chapter Review 498
9 Sequences, Series, and 500Power Series
9.1 Sequences and Convergence 500
Convergence of Sequences 502
9.2 Infinite Series 508
Geometric Series 509
Telescoping Series and Harmonic Series 511
Some Theorems About Series 512
9.3 Convergence Tests for Positive Series 515
The Integral Test 515
Using Integral Bounds to Estimate the 517
Sum of a Series
518
Comparison Tests 521
Using Geometric Bounds to Estimate the 523
Sum of a Series
9.4 Absolute and Conditional Convergence 525
The Alternating Series Test 526
Rearranging the Terms in a Series 529
9.5 Power Series 531
Algebraic Operations on Power Series 534
Differentiation and Integration of Power 536
Series
Maple Calculations 541
9.6 Taylor and Maclaurin Series 542
Maclaurin Series for Some Elementary 543
Functions
Other Maclaurin and Taylor Series 546
Taylor's Formula Revisited 549
9.7 Applications of Taylor and Maclaurin 551 Series
Approximating the Values of Functions 551
Functions Defined by Integrals 553
Indeterminate Forms 553
9.8 The Binomial Theorem and Binomial 555
Series
The Binomial Series 556
The Multinomial Theorem 558
9.9 Fourier Series 560
Periodic Functions 560
Fourier Series 561
Convergence of Fourier Series 562
Fourier Cosine and Sine Series 564
Chapter Review 565
10 Vectors and Coordinate Geometry in 3-Space
10.1 Analytic Geometry in Three Dimensions 570
Euclidean n-Space 573
Describing Sets in the Plane, 3-Space, and 573n-Space
10.2 Vectors 575
Vectors in 3-Space 577
Hanging Cables and Chains 579
The Dot Product and Projections 581
Vectors in n-Space 583
10.3 The Cross Product in 3-Space 585
Determinants 587
The Cross Product as a Determinant 589
Applications of Cross Products 591
10.4 Planes and Lines 593
Planes in 3-Space 593
Lines in 3-Space 595
Distances 597
10.5 Quadric Surfaces 600
10.6 Cylindrical and Spherical Coordinates 603
Cylindrical Coordinates 604
Spherical Coordinates 605
10.7 A Little Linear Algebra 608
Matrices 608
Determinants and Matrix Inverses 610
Linear Transformations 613
Linear Equations 613
Quadratic Forms, Eigenvalues, and 616
Eigenvectors
10.8 Using Maple for Vector and Matrix 618
Calculations
Vectors 619
Matrices 623
Linear Equations 624
Eigenvalues and Eigenvectors 625
Chapter Review 627
11 Vector Functions and Curves 629
11.1 Vector Functions of One Variable 629
Differentiating Combinations of Vectors 633
11.2 Some Applications of Vector Differentiation 636
Motion Involving Varying Mass 636
Circular Motion 637
Rotating Frames and the Coriolis Effect 638
11.3 Curves and Parametrizations 643
Parametrizing the Curve of Intersection of 645Two Surfaces
Arc Length 646
Piecewise Smooth Curves 648
The Arc-Length Parametrization 648
11.4 Curvature, Torsion, and the Frenet Frame 650
The Unit Tangent Vector 650
Curvature and the Unit Normal 651
Torsion and Binormal, the Frenet-Serret 654
Formulas
11.5 Curvature and Torsion for General 658
Parametrizations
Tangential and Normal Acceleration 660
Evolutes 661
An Application to Track (or Road) Design 662
Maple Calculations 663
11.6 Kepler's Laws of Planetary Motion 665
Ellipses in Polar Coordinates 666
Polar Components of Velocity and 667
Acceleration
Central Forces and Kepler's Second Law 669
Derivation of Kepler's First and Third 670
Laws
Conservation of Energy 672
Chapter Review 674
12 Partial Differentiation 678
12.1 Functions of Several Variables 678
Graphs 679
Level Curves 680
Using Maple Graphics 683
12.2 Limits and Continuity 686
12.3 Partial Derivatives 690
Tangent Planes and Normal Lines 693
Distance from a Point to a Surface: A 695
Geometric Example
12.4 Higher-Order Derivatives 697
The Laplace and Wave Equations 700
12.5 The Chain Rule 703
Homogeneous Functions 708
Higher-Order Derivatives 708
12.6 Linear Approximations, Differentiability, 713and Differentials
Proof of the Chain Rule 715
Differentials 716
Functions from n-Space to m-Space 717
Differentials in Applications 719
Differentials and Legendre Transformations 724
12.7 Gradients and Directional Derivatives 723
Directional Derivatives 725
Rates Perceived by a Moving Observer 729
The Gradient in Three and More 730
12.8 Implicit Functions 734
Systems of Equations 735
Choosing Dependent and Independent 737
Variables
Jacobian Determinants 739
The Implicit Function Theorem 739
12.9 Taylor's Formula, Taylor Series, and 744 Approximations
Approximating Implicit Functions 748
Chapter Review 750
13 Applications of Partial Derivatives
13.1 Extreme Values 752
Classifying Critical Points 754
13.2 Extreme Values of Functions Defined on 760 Restricted Domains
Linear Programming 763
13.3 Lagrange Multipliers 766
The Method of Lagrange Multipliers 767
Problems with More than One Constraint 771
13.4 Lagrange Multipliers in n-Space 774
Using Maple to Solve Constrained 779
Extremal Problems
Significance of Lagrange Multiplier Values 781
Nonlinear Programming 782
13.5 The Method of Least Squares 783
Linear Regression 785
Applications of the Least Squares Method 787to Integrals
13.6 Parametric Problems 790
Differentiating Integrals with Parameters 790
Envelopes 794
Equations with Perturbations 797
13.7 Newton's Method 799
Implementing Newton's Method Using a 801 Spreadsheet
13.8 Calculations with Maple 802
Solving Systems of Equations 802
Finding and Classifying Critical Points 804
13.9 Entropy in Statistical Mechanics and 807
Information Theory
Boltzmann Entropy 807
Shannon Entropy 808
Information Theory 809
Chapter Review 812
14 Multiple Integration 815
14.1 Double Integrals 815
Double Integrals over More General 818
Domains
Properties of the Double Integral 818
Double Integrals by Inspection 819
14.2 Iteration of Double Integrals in Cartesian 821 Coordinates
14.3 Improper Integrals and a Mean-Value 828
Improper Integrals of Positive Functions 828
A Mean-Value Theorem for Double 830
Integrals
14.4 Double Integrals in Polar Coordinates 833
Change of Variables in Double Integrals 837
14.5 Triple Integrals 843
14.6 Change of Variables in Triple Integrals 849
Cylindrical Coordinates 850
Spherical Coordinates 852
14.7 Applications of Multiple Integrals 856
The Surface Area of a Graph 856
The Gravitational Attraction of a Disk 858
Moments and Centres of Mass 859
Moment of Inertia 861
Chapter Review 865
15 Vector Fields 867
15.1 Vector and Scalar Fields 867
Field Lines (Integral Curves, Trajectories, 869
Streamlines)
Vector Fields in Polar Coordinates 871
Nonlinear Systems and Liapunov 872
Functions
15.2 Conservative Fields 874
Equipotential Surfaces and Curves 876
Sources, Sinks, and Dipoles 880
15.3 Line Integrals 883
Evaluating Line Integrals 884
15.4 Line Integrals of Vector Fields 888
Connected and Simply Connected 890
DomainsIndependence of Path891
15.5 Surfaces and Surface Integrals 896
Parametric Surfaces 895
Composite Surfaces 897
Surface Integrals 897
Smooth Surfaces, Normals, and Area 898
Elements
Evaluating Surface Integrals 901
The Attraction of a Spherical Shell 904
15.6 Oriented Surfaces and Flux Integrals 907
Oriented Surfaces 907
The Flux of a Vector Field Across a 908
Surface
Calculating Flux Integrals 910
Chapter Review 912
16 Vector Calculus 914
16.1 Gradient, Divergence, and Curl 914
Interpretation of the Divergence 916
Distributions and Delta Functions 918
Interpretation of the Curl 920
16.2 Some Identities Involving Grad, Div, and 923
Curl
Scalar and Vector Potentials 925
Maple Calculations 927
16.3 Green's Theorem in the Plane 929
The Two-Dimensional Divergence 932
Theorem
16.4 The Divergence Theorem in 3-Space 933
Variants of the Divergence Theorem 937
16.5 Stokes's Theorem 939
16.6 Some Physical Applications of Vector 944
Calculus
Fluid Dynamics 944
Electromagnetism 946
Electrostatics 946
Magnetostatics 947
Maxwell's Equations 949
16.7 Orthogonal Curvilinear Coordinates 951
Coordinate Surfaces and Coordinate 953
Curves
Scale Factors and Differential Elements 954
Grad, Div, and Curl in Orthogonal 958
Curvilinear Coordinates
Chapter Review 961
17 Differential Forms and 964 Exterior Calculus
Differentials and Vectors 964
Derivatives versus Differentials 965
17.1 k-Forms 965
Bilinear Forms and 2-Forms 966
k-Forms 968
Forms on a Vector Space 970
17.2 Differential Forms and the Exterior 971Derivative
The Exterior Derivative 972
1-Forms and Legendre Transformations 975
Maxwell's Equations Revisited 976
Closed and Exact Forms 976
17.3 Integration on Manifolds 978
Smooth Manifolds 978
Integration in n Dimensions 980
Sets of k-Volume Zero 981
Parametrizing and Integrating over a 981
Smooth Manifold
17.4 Orientations, Boundaries, and Integration 984
of Forms
Oriented Manifolds 984
Pieces-with-Boundary of a Manifold 986
Integrating a Differential Form over a 989
Manifold
17.5 The Generalized Stokes Theorem 991
Proof of Theorem 4 for a k-Cube 992
Completing the Proof 994
The Classical Theorems of Vector 995
Calculus
18 Ordinary Differential 999 Equations
18.1 Classifying Differential Equations 1001
18.2 Solving First-Order Equations 1004
Separable Equations 1004
First-Order Linear Equations 1005
First-Order Homogeneous Equations 1005
Exact Equations 1006
Integrating Factors 1007
18.3 Existence, Uniqueness, and Numerical 1009 Methods
Existence and Uniqueness of Solutions 1010
Numerical Methods 1011
18.4 Differential Equations of Second Order 1017
Equations Reducible to First Order 1017
Second-Order Linear Equations 1018
18.5 Linear Differential Equations with Constant 1020 Coefficients
Constant-Coefficient Equations of Higher 1021Order
Euler (Equidimensional) Equations 1023
18.6 Nonhomogeneous Linear Equations 1025
Resonance 1028
Variation of Parameters 1029
Maple Calculations 1031
18.7 The Laplace Transform 1032
Some Basic Laplace Transforms 1034
More Properties of Laplace Transforms 1035
The Heaviside Function and the Dirac 1037
Delta Function
18.8 Series Solutions of Differential Equations 1041
18.9 Dynamical Systems, Phase Space, and the 1045
Phase Plane
A Differential Equation as a First-Order 1046
System
Existence, Uniqueness, and Autonomous 1047
Systems
Second-Order Autonomous Equations and 1048the Phase Plane
Fixed Points 1050
Linear Systems, Eigenvalues, and Fixed 1051
Points
Implications for Nonlinear Systems 1054
Predator-Prey Models 1056
Chapter Review 1059

Appendices

Appendix I Complex Numbers A-1
Definition of Complex Numbers A-2
Graphical Representation of Complex Numbers A-2
Complex Arithmetic A-4
Roots of Complex Numbers A-8
Appendix II Complex Functions A-11
Limits and Continuity A-12
The Complex Derivative A-13
The Exponential Function A-15
The Fundamental Theorem of Algebra A-16
Appendix III Continuous Functions A-21
Limits of Functions A-21
Continuous Functions A-22
Completeness and Sequential Limits A-23
Continuous Functions on a Closed, Finite Interval A-24
Appendix IV The Riemann Integral A-27
Uniform Continuity A-30
Appendix V Doing Calculus with Maple A-32
List of Maple Examples and Discussion A-33
Answers to Odd-Numbered Exercises A-33
Index A-71

Preface

A fashionable curriculum proposition is that students should be given what they need and no more. It often comes bundled with language like "efficient" and "lean." Followers are quick to enumerate a number of topics they learned as students, which remained unused in their subsequent lives. What could they have accomplished, they muse, if they could have back the time lost studying such retrospectively unused topics? But many go further-they conflate unused with useless and then advocate that students should therefore have lean and efficient curricula, teaching only what students need. It has a convincing ring to it. Who wants to spend time on courses in "useless studies?"

When confronted with this compelling position, an even more compelling reply is to look the protagonist in the eye and ask, "How do you know what students need?" That's the trick, isn't it? If you could answer questions like that, you could become rich by making only those lean and efficient investments and bets that make money. It's more than that though. Knowledge of the fundamentals, unlike old lottery tickets, retains value. Few forms of human knowledge can beat mathematics in terms of enduring value and raw utility. Mathematics learned that you have not yet used retains value into an uncertain future.

It is thus ironic that the mathematics curriculum is one of the first topics that terms like lean and efficient get applied to. While there is much to discuss about this paradox, it is safe to say that it has little to do with what students actually need. If anything, people need more mathematics than ever as the arcane abstractions of yesteryear become the consumer products of today. Can one understand how web search engines work without knowing what an eigenvector is? Can one understand how banks try to keep your accounts safe on the web without understanding polynomials, or grasping how GPS works without understanding differentials?

All of this knowledge, seemingly remote from our everyday lives, is actually at the core of the modern world. Without mathematics you are estranged from it, and everything descends into rumour, superstition, and magic. The best lesson one can teach students about what to apply themselves to is that the future is uncertain, and it is a gamble how one chooses to spend one's efforts. But a sound grounding in mathematics is always a good first option. One of the most common educational regrets of many adults is that they did not spend enough time on mathematics in school, which is quite the opposite of the efficiency regrets of spending too much time on things unused.

A good mathematics textbook cannot be about a contrived minimal necessity. It has to be more than crib notes for a lean and diminished course in what students are deemed to need, only to be tossed away after the final exam. It must be more than a website or a blog. It should be something that
stays with you, giving help in a familiar voice when you need to remember mathematics you will have forgotten over the years. Moreover, it should be something that one can grow into. People mature mathematically. As one does, concepts that seemed incomprehensible eventually become obvious. When that happens, new questions emerge that were previously inconceivable. This text has answers to many of those questions too.

Such a textbook must not only take into account the nature of the current audience, it must also be open to how well it bridges to other fields and introduces ideas new to the conventional curriculum. In this regard, this textbook is like no other. Topics not available in any other text are bravely introduced through the thematic concept of gateway applications. Applications of calculus have always been an important feature of earlier editions of this book. But the agenda of introducing gateway applications was introduced in the 8th edition. Rather than shrinking to what is merely needed, this 9th edition is still more comprehensive than the 8th edition. Of course, it remains possible to do a light and minimal treatment of the subject with this book, but the decision as to what that might mean precisely becomes the responsibility of a skilled instructor, and not the result of the limitations of some text. Correspondingly, a richer treatment is also an option. Flexibility in terms of emphasis, exercises, and projects is made easily possible with a larger span of subject material.

Some of the unique topics naturally addressed in the gateway applications, which may be added or omitted, include Liapunov functions, and Legendre transformations, not to mention exterior calculus. Exterior calculus is a powerful refinement of the calculus of a century ago, which is often overlooked. This text has a complete chapter on it, written accessibly in classical textbook style rather than as an advanced monograph. Other gateway applications are easy to cover in passing, but they are too often overlooked in terms of their importance to modern science. Liapunov functions are often squeezed into advanced books because they are left out of classical curricula, even though they are an easy addition to the discussion of vector fields, where their importance to stability theory and modern biomathematics can be usefully noted. Legendre transformations, which are so important to modern physics and thermodynamics, are a natural and easy topic to add to the discussion of differentials in more than one variable.

There are rich opportunities that this textbook captures. For example, it is the only mainstream textbook that covers sufficient conditions for maxima and minima in higher dimensions, providing answers to questions that most books gloss over. None of these are inaccessible. They are rich opportunities missed because many instructors are simply unfamiliar with their importance to other fields. The 9th edition continues in this tradition. For example, in the existing sec-
tion on probability there is a new gateway application added that treats heavy-tailed distributions and their consequences for real-world applications.

The 9th edition, in addition to various corrections and refinements, fills in gaps in the treatment of differential equations from the 8th edition, with entirely new material. A linear operator approach to understanding differential equations is added. Also added is a refinement of the existing material on the Dirac delta function, and a full treatment of Laplace transforms. In addition, there is an entirely new section on phase plane analysis. The new phase plane section covers the classical treatment, if that is all one wants, but it goes much further for those who want more, now or later. It can set the reader up for dynamical systems in higher dimensions in a unique, lucid, and compact exposition. With existing treatments of various aspects of differential equations
throughout the existing text, the 9th edition becomes suitable for a semester course in differential equations, in addition to the existing standard material suitable for four semesters of calculus.

Not only can the 9th edition be used to deliver five standard courses of conventional material, it can do much more through some of the unique topics and approaches mentioned above, which can be added or overlooked by the instructor without penalty. There is no other calculus book that deals better with computers and mathematics through Maple, in addition to unique but important applications from information theory to Lévy distributions, and does all of these things fearlessly. This 9th edition is the first one to be produced in full colour, and it continues to aspire to its subtitle: "A Complete Course." It is like no other.

About the Cover

The fall of rainwater droplets in a forest is frozen in an instant of time. For any small droplet of water, surface tension causes minimum energy to correspond to minimum surface area. Thus, small amounts of falling water are enveloped by nearly perfect minimal spheres, which act like lenses that image the forest background. The forest image is inverted because of the geometry of ray paths of light through a sphere. Close examination reveals that other droplets are also imaged, appearing almost like bubbles in glass. Still closer examination shows that the forest is right side up in the droplet images of the other droplets-transformation and inverse in one picture. If the droplets were much smaller, simple geometry of ray paths through a sphere would fail, because the wave nature of light would dominate. Interactions with the spherical droplets are then governed by Maxwell's equations instead of simple geometry. Tiny spheres exhibit Mie scattering of light instead, making a large collection of minute droplets, as in a cloud, seem brilliant white on a sunny day. The story of clouds, waves, rays, inverses, and minima are all contained in this instant of time in a forest.

To the Student

You are holding what has become known as a "high-end" calculus text in the book trade. You are lucky. Think of it as having a high-end touring car instead of a compact economy car. But, even though this is the first edition to be published in full colour, it is not high end in the material sense. It does not have scratch-and-sniff pages, sparkling radioactive ink, or anything else like that. It's the content that sets it apart. Unlike the car business, "high-end" book content is not priced any higher than that of any other book. It is one of the few consumer items where anyone can afford to buy into the high end. But there is a catch. Unlike cars, you have to do the work to achieve the promise of the book. So in that sense "high end" is more like a form of "secret" martial arts for your mind that the economy version cannot deliver. If you practise, your mind will become stronger. You will become more confident and disciplined. Secrets of the ages will become open to you. You will become fearless, as your mind longs to tackle any new mathematical challenge.

But hard work is the watchword. Practise, practise, practise. It is exhilarating when you finally get a new idea that you did not understand before. There are few experiences as great as figuring things out. Doing exercises and checking your answers against those in the back of the book are how you practise mathematics with a text. You can do essentially the same thing on a computer; you still do the problems and check the answers. However you do it, more exercises mean more practice and better performance.

There are numerous exercises in this text-too many for you to try them all perhaps, but be ambitious. Some are "drill" exercises to help you develop your skills in calculation. More important, however, are the problems that develop reasoning skills and your ability to apply the techniques you have learned to concrete situations. In some cases, you will have to plan your way through a problem that requires several different "steps" before you can get to the answer. Other exercises are designed to extend the theory developed in the text and therefore enhance your understanding of the concepts of calculus. Think of the problems as a tool to help you correctly wire your mind. You may have a lot of great components in your head, but if you don't wire the components together properly, your "home theatre" won't work.

The exercises vary greatly in difficulty. Usually, the more difficult ones occur toward the end of exercise sets, but these sets are not strictly graded in this way because exercises on a specific topic tend to be grouped together. Also, "difficulty" can be subjective. For some students, exercises designated difficult may seem easy, while exercises designated
easy may seem difficult. Nonetheless, some exercises in the regular sets are marked with the symbols \square, which indicates that the exercise is somewhat more difficult than most, or P $^{(}$, which indicates a more theoretical exercise. The theoretical ones need not be difficult; sometimes they are quite easy. Most of the problems in the Challenging Problems section forming part of the Chapter Review at the end of most chapters are also on the difficult side.

It is not a bad idea to review the background material in Chapter P (Preliminaries), even if your instructor does not refer to it in class.

If you find some of the concepts in the book difficult to understand, re-read the material slowly, if necessary several times; think about it; formulate questions to ask fellow students, your TA, or your instructor. Don't delay. It is important to resolve your problems as soon as possible. If you don't understand today's topic, you may not understand how it applies to tomorrow's either. Mathematics builds from one idea to the next. Testing your understanding of the later topics also tests your understanding of the earlier ones. Do not be discouraged if you can't do all the exercises. Some are very difficult indeed. The range of exercises ensures that nearly all students can find a comfortable level to practise at, while allowing for greater challenges as skill grows.

Answers for most of the odd-numbered exercises are provided at the back of the book. Exceptions are exercises that don't have short answers: for example, "Prove that . . ." or "Show that ..." problems where the answer is the whole solution. A Student Solutions Manual that contains detailed solutions to even-numbered exercises is available.

Besides \square and ${ }^{?}$ used to mark more difficult and theoretical problems, the following symbols are used to mark exercises of special types:
Exercises pertaining to differential equations and initialvalue problems. (It is not used in sections that are wholly concerned with DEs.)
潩屈 Problems requiring the use of a calculator. Often a scientific calculator is needed. Some such problems may require a programmable calculator.
fl Problems requiring the use of either a graphing calculator or mathematical graphing software on a personal computer.

* Problems requiring the use of a computer. Typically, these will require either computer algebra software (e.g., Maple, Mathematica) or a spreadsheet program such as Microsoft Excel.

To the Instructor

Calculus: a Complete Course, 9th Edition contains 19 chapters, P and $1-18$, plus 5 Appendices. It covers the material usually encountered in a three- to five-semester real-variable calculus program, involving real-valued functions of a single real variable (differential calculus in Chapters 1-4 and integral calculus in Chapters 5-8), as well as vector-valued functions of a single real variable (covered in Chapter 11), real-valued functions of several real variables (in Chapters 12-14), and vector-valued functions of several real variables (in Chapters 15-17). Chapter 9 concerns sequences and series, and its position is rather arbitrary.

Most of the material requires only a reasonable background in high school algebra and analytic geometry. (See Chapter P-Preliminaries for a review of this material.) However, some optional material is more subtle and/or theoretical and is intended for stronger students, special topics, and reference purposes. It also allows instructors considerable flexibility in making points, answering questions, and selective enrichment of a course.

Chapter 10 contains necessary background on vectors and geometry in 3-dimensional space as well as some linear algebra that is useful, although not absolutely essential, for the understanding of subsequent multivariable material. Material on differential equations is scattered throughout the book, but Chapter 18 provides a compact treatment of ordinary differential equations (ODEs), which may provide enough material for a one-semester course on the subject.

There are two split versions of the complete book. Single-Variable Calculus, 9th Edition covers Chapters P, $1-9,18$ and all five appendices. Calculus of Several Variables, 9th Edition covers Chapters 9-18 and all five appendices. It also begins with a brief review of Single-Variable Calculus.

Besides numerous improvements and clarifications throughout the book and tweakings of existing material such as consideration of probability densities with heavy tails in Section 7.8, and a less restrictive definition of the Dirac delta function in Section 16.1, there are two new sections in Chapter 18, one on Laplace Transforms (Section 18.7) and one on Phase Plane Analysis of Dynamical Systems (Section 18.9).

There is a wealth of material here-too much to include in any one course. It was never intended to be otherwise. You must select what material to include and what to omit, taking into account the background and needs of your students. At the University of British Columbia, where one author taught for 34 years, and at the University of Western Ontario, where the other author continues to teach, calculus is divided into four semesters, the first two covering single-variable calculus, the third covering functions of several variables, and the fourth covering vector calculus. In none of these courses was there enough time to cover all the material in the appropriate chapters; some sections are always omitted. The text
is designed to allow students and instructors to conveniently find their own level while enhancing any course from general calculus to courses focused on science and engineering students.

Several supplements are available for use with Calculus: A Complete Course, 9th Edition. Available to students is the Student Solutions Manual (ISBN: 9780134491073): This manual contains detailed solutions to all the even-numbered exercises, prepared by the authors. There are also such Manuals for the split volumes, for Single Variable Calculus (ISBN: 9780134579863), and for Calculus of Several Variables (ISBN: 9780134579856).

Available to instructors are the following resources:

- Instructor's Solutions Manual

- Computerized Test Bank Pearson's computerized test bank allows instructors to filter and select questions to create quizzes, tests, or homework (over 1,500 test questions)
- Image Library, which contains all of the figures in the text provided as individual enlarged .pdf files suitable for printing to transparencies.
These supplements are available for download from a password-protected section of Pearson Canada's online catalogue (catalogue.pearsoned.ca). Navigate to this book's catalogue page to view a list of those supplements that are available. Speak to your local Pearson sales representative for details and access.

Also available to qualified instructors are MyMathLab ${ }^{\circledR}$ and MathXL ${ }^{\circledR}$ Online Courses for which access codes are required.

MyMathLab helps improve individual students' performance. It has a consistently positive impact on the quality of learning in higher-education math instruction. MyMathLab's comprehensive online gradebook automatically tracks your students' results on tests, quizzes, homework, and in the study plan. MyMathLab provides engaging experiences that personalize, stimulate, and measure learning for each student. The homework and practice exercises in MyMathLab are correlated to the exercises in the textbook. The software offers immediate, helpful feedback when students enter incorrect answers. Exercises include guided solutions, sample problems, animations, and eText clips for extra help. MyMathLab comes from an experienced partner with educational expertise and an eye on the future. Knowing that you are using a Pearson product means knowing that you are using quality content. That means that our eTexts are accurate and our assessment tools work. To learn more about how MyMathLab combines proven learning applications with powerful assessment, visit www.mymathlab.com or contact your Pearson representative.

MathXL is the homework and assessment engine that runs MyMathLab. (MyMathLab is MathXL plus a learning management system.) MathXL is available to qualified adopters. For more information, visit our website at www.mathxl.com, or contact your Pearson representative.

In addition, there is an eText available. Pearson eText gives students access to the text whenever and wherever they have online access to the Internet. eText pages look exactly like the printed text, offering powerful new functionality for students and instructors. Users can create notes, highlight text in different colours, create bookmarks, zoom, click hyperlinked words and phrases to view definitions, and view in single-page or two-page view.

Learning Solutions Managers. Pearson's Learning Solutions Managers work with faculty and campus course designers to ensure that Pearson technology products, assessment tools, and online course materials are tailored to meet your specific needs. This highly qualified team is dedicated to helping schools take full advantage of a wide range of educational resources by assisting in the integration of a variety of instructional materials and media formats. Your local Pearson Canada sales representative can provide you with more details on this service program.

Acknowledgments

The authors are grateful to many colleagues and students at the University of British Columbia and Western University, and at many other institutions worldwide where previous editions of these books have been used, for their encouragement and useful comments and suggestions.

We also wish to thank the sales and marketing staff of all Addison-Wesley (now Pearson) divisions around the world for making the previous editions so successful, and the editorial and production staff in Toronto, in particular,

Acquisitions Editor:	Jennifer Sutton
Program Manager:	Emily Dill
Developmental Editor:	Charlotte Morrison-Reed
Production Manager:	Susan Johnson
Copy Editor:	Valerie Adams
Production Editor/Proofreader:	Leanne Rancourt
Designer:	Anthony Leung

for their assistance and encouragement.
This volume was typeset by Robert Adams using TEX on an iMac computer running OSX version 10.10. Most of the figures were generated using the mathematical graphics software package MG developed by Robert Israel and Robert Adams. Some were produced with Maple 10.

The expunging of errors and obscurities in a text is an ongoing and asymptotic process; hopefully each edition is better than the previous one. Nevertheless, some such imperfections always remain, and we will be grateful to any readers who call them to our attention, or give us other suggestions for future improvements.

May 2016

> R.A.A.
> Vancouver, Canada
> adms@math. ubc. ca

London, Canada

essex@uwo.ca

This page intentionally left blank

What Is Calculus?

Early in the seventeenth century, the German mathematician Johannes Kepler analyzed a vast number of astronomical observations made by Danish astronomer Tycho Brahe and concluded that the planets must move around the sun in elliptical orbits. He didn't know why. Fifty years later, the English mathematician and physicist Isaac Newton answered that question.

Why do the planets move in elliptical orbits around the sun? Why do hurricane winds spiral counterclockwise in the northern hemisphere? How can one predict the effects of interest rate changes on economies and stock markets? When will radioactive material be sufficiently decayed to enable safe handling? How do warm ocean currents in the equatorial Pacific affect the climate of eastern North America? How long will the concentration of a drug in the bloodstream remain at effective levels? How do radio waves propagate through space? Why does an epidemic spread faster and faster and then slow down? How can I be sure the bridge I designed won't be destroyed in a windstorm?

These and many other questions of interest and importance in our world relate directly to our ability to analyze motion and how quantities change with respect to time or each other. Algebra and geometry are useful tools for describing relationships between static quantities, but they do not involve concepts appropriate for describing how a quantity changes. For this we need new mathematical operations that go beyond the algebraic operations of addition, subtraction, multiplication, division, and the taking of powers and roots. We require operations that measure the way related quantities change.

Calculus provides the tools for describing motion quantitatively. It introduces two new operations called differentiation and integration, which, like addition and subtraction, are opposites of one another; what differentiation does, integration undoes.

For example, consider the motion of a falling rock. The height (in metres) of the rock t seconds after it is dropped from a height of $h_{0} \mathrm{~m}$ is a function $h(t)$ given by

$$
h(t)=h_{0}-4.9 t^{2}
$$

The graph of $y=h(t)$ is shown in the figure below:

The process of differentiation enables us to find a new function, which we denote $h^{\prime}(t)$ and call the derivative of h with respect to t, which represents the rate of change of the height of the rock, that is, its velocity in metres/second:

$$
h^{\prime}(t)=-9.8 t
$$

Conversely, if we know the velocity of the falling rock as a function of time, integration enables us to find the height function $h(t)$.

Calculus was invented independently and in somewhat different ways by two seven-teenth-century mathematicians: Isaac Newton and Gottfried Wilhelm Leibniz. Newton's motivation was a desire to analyze the motion of moving objects. Using his calculus, he was able to formulate his laws of motion and gravitation and conclude from them that the planets must move around the sun in elliptical orbits.

Many of the most fundamental and important "laws of nature" are conveniently expressed as equations involving rates of change of quantities. Such equations are called differential equations, and techniques for their study and solution are at the heart of calculus. In the falling rock example, the appropriate law is Newton's Second Law of Motion:

```
force = mass }\times\mathrm{ acceleration.
```

The acceleration, $-9.8 \mathrm{~m} / \mathrm{s}^{2}$, is the rate of change (the derivative) of the velocity, which is in turn the rate of change (the derivative) of the height function.

Much of mathematics is related indirectly to the study of motion. We regard lines, or curves, as geometric objects, but the ancient Greeks thought of them as paths traced out by moving points. Nevertheless, the study of curves also involves geometric concepts such as tangency and area. The process of differentiation is closely tied to the geometric problem of finding tangent lines; similarly, integration is related to the geometric problem of finding areas of regions with curved boundaries.

Both differentiation and integration are defined in terms of a new mathematical operation called a limit. The concept of the limit of a function will be developed in Chapter 1. That will be the real beginning of our study of calculus. In the chapter called "Preliminaries" we will review some of the background from algebra and geometry needed for the development of calculus.

Preliminaries

> 4 'Reeling and Writhing, of course, to begin with,' the Mock Turtle replied, 'and the different branches of Arithmetic-Ambition, Distraction, Uglification, and Derision.'

71

Lewis Carroll (Charles Lutwidge Dodgson) 1832-1898 from Alice's Adventures in Wonderland

IntroductionThis preliminary chapter reviews the most important things you should know before beginning calculus. Topics include the real number system; Cartesian coordinates in the plane; equations representing straight lines, circles, and parabolas; functions and their graphs; and, in particular, polynomials and trigonometric functions.

Depending on your precalculus background, you may or may not be familiar with these topics. If you are, you may want to skim over this material to refresh your understanding of the terms used; if not, you should study this chapter in detail.

P. 1 Real Numbers and the Real Line

Calculus depends on properties of the real number system. Real numbers are numbers that can be expressed as decimals, for example,

$$
\begin{aligned}
5 & =5.00000 \ldots \\
-\frac{3}{4} & =-0.750000 \ldots \\
\frac{1}{3} & =0.3333 \ldots \\
\sqrt{2} & =1.4142 \ldots \\
\pi & =3.14159 \ldots
\end{aligned}
$$

In each case the three dots (...) indicate that the sequence of decimal digits goes on forever. For the first three numbers above, the patterns of the digits are obvious; we know what all the subsequent digits are. For $\sqrt{2}$ and π there are no obvious patterns.

The real numbers can be represented geometrically as points on a number line, which we call the real line, shown in Figure P.1. The symbol \mathbb{R} is used to denote either the real number system or, equivalently, the real line.

\downarrow	$\downarrow \downarrow$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	$\downarrow \downarrow$	\downarrow
-2	$-1-\frac{3}{4}$	0	$\frac{1}{3}$	1	$\sqrt{2}$	2	3π	4

The properties of the real number system fall into three categories: algebraic properties, order properties, and completeness. You are already familiar with the algebraic properties; roughly speaking, they assert that real numbers can be added, subtracted, multiplied, and divided (except by zero) to produce more real numbers and that the usual rules of arithmetic are valid.

The symbol \Longrightarrow means
"implies."

The order properties of the real numbers refer to the order in which the numbers appear on the real line. If x lies to the left of y, then we say that " x is less than y " or " y is greater than x." These statements are written symbolically as $x<y$ and $y>x$, respectively. The inequality $x \leq y$ means that either $x<y$ or $x=y$. The order properties of the real numbers are summarized in the following rules for inequalities:

Rules for inequalities

If a, b, and c are real numbers, then:

1. $a<b \quad \Longrightarrow \quad a+c<b+c$
2. $a<b \quad \Longrightarrow \quad a-c<b-c$
3. $a<b$ and $c>0 \quad \Longrightarrow \quad a c<b c$
4. $a<b$ and $c<0 \quad \Longrightarrow \quad a c>b c$; in particular, $-a>-b$
5. $a>0 \quad \Longrightarrow \quad \frac{1}{a}>0$
6. $0<a<b \quad \Longrightarrow \quad \frac{1}{b}<\frac{1}{a}$

Rules $1-4$ and 6 (for $a>0$) also hold if $<$ and $>$ are replaced by \leq and \geq.
Note especially the rules for multiplying (or dividing) an inequality by a number. If the number is positive, the inequality is preserved; if the number is negative, the inequality is reversed.

The completeness property of the real number system is more subtle and difficult to understand. One way to state it is as follows: if A is any set of real numbers having at least one number in it, and if there exists a real number y with the property that $x \leq y$ for every x in A (such a number y is called an upper bound for A), then there exists a smallest such number, called the least upper bound or supremum of A, and denoted $\sup (A)$. Roughly speaking, this says that there can be no holes or gaps on the real line-every point corresponds to a real number. We will not need to deal much with completeness in our study of calculus. It is typically used to prove certain important results-in particular, Theorems 8 and 9 in Chapter 1. (These proofs are given in Appendix III but are not usually included in elementary calculus courses; they are studied in more advanced courses in mathematical analysis.) However, when we study infinite sequences and series in Chapter 9, we will make direct use of completeness.

The set of real numbers has some important special subsets:
(i) the natural numbers or positive integers, namely, the numbers $1,2,3,4, \ldots$
(ii) the integers, namely, the numbers $0, \pm 1, \pm 2, \pm 3, \ldots$
(iii) the rational numbers, that is, numbers that can be expressed in the form of a fraction m / n, where m and n are integers, and $n \neq 0$.
The rational numbers are precisely those real numbers with decimal expansions that are either:
(a) terminating, that is, ending with an infinite string of zeros, for example, $3 / 4=0.750000 \ldots$, or
(b) repeating, that is, ending with a string of digits that repeats over and over, for example, $23 / 11=2.090909 \ldots=2 . \overline{09}$. (The bar indicates the pattern of repeating digits.)
Real numbers that are not rational are called irrational numbers.

Figure P. 2 Finite intervals

interval $(-\infty, \infty)$ is the real line

Figure P. 3 Infinite intervals

EXAMPLE 1 Show that each of the numbers (a) $1.323232 \cdots=1 . \overline{32}$ and (b) $0.3405405405 \ldots=0.3 \overline{405}$ is a rational number by expressing it as a quotient of two integers.

Solution

(a) Let $x=1.323232 \ldots$ Then $x-1=0.323232 \ldots$ and

$$
100 x=132.323232 \ldots=132+0.323232 \ldots=132+x-1
$$

Therefore, $99 x=131$ and $x=131 / 99$.
(b) Let $y=0.3405405405 \ldots$ Then $10 y=3.405405405 \ldots$ and
$10 y-3=0.405405405 \ldots$ Also,

$$
10,000 y=3,405.405405405 \ldots=3,405+10 y-3
$$

Therefore, $9,990 y=3,402$ and $y=3,402 / 9,990=63 / 185$.

The set of rational numbers possesses all the algebraic and order properties of the real numbers but not the completeness property. There is, for example, no rational number whose square is 2 . Hence, there is a "hole" on the "rational line" where $\sqrt{2}$ should be. ${ }^{1}$ Because the real line has no such "holes," it is the appropriate setting for studying limits and therefore calculus.

Intervals

A subset of the real line is called an interval if it contains at least two numbers and also contains all real numbers between any two of its elements. For example, the set of real numbers x such that $x>6$ is an interval, but the set of real numbers y such that $y \neq 0$ is not an interval. (Why?) It consists of two intervals.

If a and b are real numbers and $a<b$, we often refer to
(i) the open interval from a to b, denoted by (a, b), consisting of all real numbers x satisfying $a<x<b$.
(ii) the closed interval from a to b, denoted by $[a, b]$, consisting of all real numbers x satisfying $a \leq x \leq b$.
(iii) the half-open interval $[a, b)$, consisting of all real numbers x satisfying the inequalities $a \leq x<b$.
(iv) the half-open interval (a, b], consisting of all real numbers x satisfying the inequalities $a<x \leq b$.
These are illustrated in Figure P.2. Note the use of hollow dots to indicate endpoints of intervals that are not included in the intervals, and solid dots to indicate endpoints that are included. The endpoints of an interval are also called boundary points.

The intervals in Figure P. 2 are finite intervals; each of them has finite length $b-a$. Intervals can also have infinite length, in which case they are called infinite intervals. Figure P. 3 shows some examples of infinite intervals. Note that the whole real line \mathbb{R} is an interval, denoted by $(-\infty, \infty)$. The symbol ∞ ("infinity") does not denote a real number, so we never allow ∞ to belong to an interval.

[^0]The symbol \Longleftrightarrow means "if and only if" or "is equivalent to." If A and B are two statements, then $A \Longleftrightarrow B$ means that the truth of either statement implies the truth of the other, so either both must be true or both must be false.

Figure P. 4 The intervals for Example 2

EXAMPLE 2
Solve the following inequalities. Express the solution sets in terms of intervals and graph them.
(a) $2 x-1>x+3$
(b) $-\frac{x}{3} \geq 2 x-1$
(c) $\frac{2}{x-1} \geq 5$

Solution

(a) $2 x-1>x+3 \quad$ Add 1 to both sides.

$$
\begin{aligned}
& 2 x>x+4 \\
& \text { Subtract } x \text { from both sides. } \\
& x>4 \\
& \text { The solution set is the interval }(4, \infty) .
\end{aligned}
$$

(b) $-\frac{x}{3} \geq 2 x-1 \quad$ Multiply both sides by -3 .
$x \leq-6 x+3 \quad$ Add $6 x$ to both sides.
$7 x \leq 3 \quad$ Divide both sides by 7 .
$x \leq \frac{3}{7} \quad$ The solution set is the interval $(-\infty, 3 / 7]$.
(c) We transpose the 5 to the left side and simplify to rewrite the given inequality in an equivalent form:

$$
\frac{2}{x-1}-5 \geq 0 \quad \Longleftrightarrow \quad \frac{2-5(x-1)}{x-1} \geq 0 \quad \Longleftrightarrow \quad \frac{7-5 x}{x-1} \geq 0
$$

The fraction $\frac{7-5 x}{x-1}$ is undefined at $x=1$ and is 0 at $x=7 / 5$. Between these numbers it is positive if the numerator and denominator have the same sign, and negative if they have opposite sign. It is easiest to organize this sign information in a chart:

x	1				
$7 / 5$					
$7-5 x$	+	+	+	0	-
$x-1$	-	0	+	+	+
$(7-5 x) /(x-1)$	-	undef	+	0	-

Thus the solution set of the given inequality is the interval $(1,7 / 5]$.
See Figure P. 4 for graphs of the solutions.

Sometimes we will need to solve systems of two or more inequalities that must be satisfied simultaneously. We still solve the inequalities individually and look for numbers in the intersection of the solution sets.

EXAMPLE 3 Solve the systems of inequalities:
(a) $3 \leq 2 x+1 \leq 5$
(b) $3 x-1<5 x+3 \leq 2 x+15$.

Solution

(a) Using the technique of Example 2, we can solve the inequality $3 \leq 2 x+1$ to get $2 \leq 2 x$, so $x \geq 1$. Similarly, the inequality $2 x+1 \leq 5$ leads to $2 x \leq 4$, so $x \leq 2$. The solution set of system (a) is therefore the closed interval [1, 2].
(b) We solve both inequalities as follows:

$$
\left.\begin{array}{rl}
3 x-1 & <5 x+3 \\
-1-3 & <5 x-3 x \\
-4 & <2 x \\
-2 & <x
\end{array}\right\} \quad \text { and } \quad\left\{\begin{aligned}
5 x+3 & \leq 2 x+15 \\
5 x-2 x & \leq 15-3 \\
3 x & \leq 12 \\
x & \leq 4
\end{aligned}\right.
$$

The solution set is the interval $(-2,4]$.

Solving quadratic inequalities depends on solving the corresponding quadratic equations.

EXAMPLE 4 Quadratic inequalities

Solve: (a) $x^{2}-5 x+6<0$
(b) $2 x^{2}+1>4 x$.

Solution

(a) The trinomial $x^{2}-5 x+6$ factors into the product $(x-2)(x-3)$, which is negative if and only if exactly one of the factors is negative. Since $x-3<x-2$, this happens when $x-3<0$ and $x-2>0$. Thus we need $x<3$ and $x>2$; the solution set is the open interval $(2,3)$.
(b) The inequality $2 x^{2}+1>4 x$ is equivalent to $2 x^{2}-4 x+1>0$. The corresponding quadratic equation $2 x^{2}-4 x+1=0$, which is of the form $A x^{2}+B x+C=0$, can be solved by the quadratic formula (see Section P.6):

$$
x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}=\frac{4 \pm \sqrt{16-8}}{4}=1 \pm \frac{\sqrt{2}}{2}
$$

so the given inequality can be expressed in the form

$$
\left(x-1+\frac{1}{2} \sqrt{2}\right)\left(x-1-\frac{1}{2} \sqrt{2}\right)>0
$$

This is satisfied if both factors on the left side are positive or if both are negative. Therefore, we require that either $x<1-\frac{1}{2} \sqrt{2}$ or $x>1+\frac{1}{2} \sqrt{2}$. The solution set is the union of intervals $\left(-\infty, 1-\frac{1}{2} \sqrt{2}\right) \cup\left(1+\frac{1}{2} \sqrt{2}, \infty\right)$.

Note the use of the symbol \cup to denote the union of intervals. A real number is in the union of intervals if it is in at least one of the intervals. We will also need to consider the intersection of intervals from time to time. A real number belongs to the intersection of intervals if it belongs to every one of the intervals. We will use \cap to denote intersection. For example,

$$
[1,3) \cap[2,4]=[2,3) \quad \text { while }[1,3) \cup[2,4]=[1,4]
$$

EXAMPLE 5 Solve the inequality $\frac{3}{x-1}<-\frac{2}{x}$ and graph the solution set.
Solution We would like to multiply by $x(x-1)$ to clear the inequality of fractions, but this would require considering three cases separately. (What are they?) Instead, we will transpose and combine the two fractions into a single one:

$$
\frac{3}{x-1}<-\frac{2}{x} \quad \Longleftrightarrow \quad \frac{3}{x-1}+\frac{2}{x}<0 \quad \Longleftrightarrow \quad \frac{5 x-2}{x(x-1)}<0
$$

We examine the signs of the three factors in the left fraction to determine where that fraction is negative:

x		0		$2 / 5$		1	
$5 x-2$	-	-	-	0	+	+	+
x	-	0	+	+	+	+	+
$x-1$	-	-	-	-	-	0	+
$\frac{5 x-2}{x(x-1)}$	-	undef	+	0	-	undef	+

The solution set of the given inequality is the union of these two intervals, namely, $(-\infty, 0) \cup(2 / 5,1)$. See Figure P.5.

It is important to remember that $\sqrt{a^{2}}=|a|$. Do not write $\sqrt{a^{2}}=a$ unless you already know that $a \geq 0$.

Figure P. 6
$|x-y|=$ distance from x to y

The Absolute Value

The absolute value, or magnitude, of a number x, denoted $|x|$ (read "the absolute value of $x^{\prime \prime}$), is defined by the formula

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

The vertical lines in the symbol $|x|$ are called absolute value bars.

$$
\text { EXAMPLE } 6 \quad|3|=3, \quad|0|=0, \quad|-5|=5
$$

Note that $|x| \geq 0$ for every real number x, and $|x|=0$ only if $x=0$. People sometimes find it confusing to say that $|x|=-x$ when x is negative, but this is correct since $-x$ is positive in that case. The symbol \sqrt{a} always denotes the nonnegative square root of a, so an alternative definition of $|x|$ is $|x|=\sqrt{x^{2}}$.

Geometrically, $|x|$ represents the (nonnegative) distance from x to 0 on the real line. More generally, $|x-y|$ represents the (nonnegative) distance between the points x and y on the real line, since this distance is the same as that from the point $x-y$ to 0 (see Figure P.6):

$$
|x-y|= \begin{cases}x-y, & \text { if } x \geq y \\ y-x, & \text { if } x<y\end{cases}
$$

The absolute value function has the following properties:

Properties of absolute values

1. $|-a|=|a|$. A number and its negative have the same absolute value.
2. $|a b|=|a||b|$ and $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$. The absolute value of a product (or quotient) of two numbers is the product (or quotient) of their absolute values.
3. $|a \pm b| \leq|a|+|b|$ (the triangle inequality). The absolute value of a sum of or difference between numbers is less than or equal to the sum of their absolute values.

The first two of these properties can be checked by considering the cases where either of a or b is either positive or negative. The third property follows from the first two because $\pm 2 a b \leq|2 a b|=2|a||b|$. Therefore, we have

$$
\begin{aligned}
|a \pm b|^{2}=(a \pm b)^{2} & =a^{2} \pm 2 a b+b^{2} \\
& \leq|a|^{2}+2|a||b|+|b|^{2}=(|a|+|b|)^{2}
\end{aligned}
$$

and taking the (positive) square roots of both sides, we obtain $|a \pm b| \leq|a|+|b|$. This result is called the "triangle inequality" because it follows from the geometric fact that the length of any side of a triangle cannot exceed the sum of the lengths of the other two sides. For instance, if we regard the points $0, a$, and b on the number line as the vertices of a degenerate "triangle," then the sides of the triangle have lengths $|a|,|b|$, and $|a-b|$. The triangle is degenerate since all three of its vertices lie on a straight line.

Equations and Inequalities Involving Absolute Values

The equation $|x|=D$ (where $D>0$) has two solutions, $x=D$ and $x=-D$: the two points on the real line that lie at distance D from the origin. Equations and inequalities involving absolute values can be solved algebraically by breaking them into cases according to the definition of absolute value, but often they can also be solved geometrically by interpreting absolute values as distances. For example, the inequality $|x-a|<D$ says that the distance from x to a is less than D, so x must lie between $a-D$ and $a+D$. (Or, equivalently, a must lie between $x-D$ and $x+D$.) If D is a positive number, then

$$
\begin{array}{lll}
|x|=D & \Longleftrightarrow & \text { either } x=-D \text { or } x=D \\
|x|<D & \Longleftrightarrow & -D<x<D \\
|x| \leq D & \Longleftrightarrow & -D \leq x \leq D \\
|x|>D & \Longleftrightarrow & \text { either } x<-D \text { or } x>D
\end{array}
$$

More generally,

$$
\begin{array}{lll}
|x-a|=D & \Longleftrightarrow & \text { either } x=a-D \text { or } x=a+D \\
|x-a|<D & \Longleftrightarrow & a-D<x<a+D \\
|x-a| \leq D & \Longleftrightarrow & a-D \leq x \leq a+D \\
|x-a|>D & \Longleftrightarrow & \text { either } x<a-D \text { or } x>a+D
\end{array}
$$

EXAMPLE 7
Solve:
(a) $|2 x+5|=3$
(b) $|3 x-2| \leq 1$.

Solution

(a) $|2 x+5|=3 \Longleftrightarrow 2 x+5= \pm 3$. Thus, either $2 x=-3-5=-8$ or $2 x=3-5=-2$. The solutions are $x=-4$ and $x=-1$.
(b) $|3 x-2| \leq 1 \Longleftrightarrow-1 \leq 3 x-2 \leq 1$. We solve this pair of inequalities:

$$
\left\{\begin{aligned}
-1 & \leq 3 x-2 \\
-1+2 & \leq 3 x \\
1 / 3 & \leq x
\end{aligned}\right\} \quad \text { and } \quad\left\{\begin{aligned}
3 x-2 & \leq 1 \\
3 x & \leq 1+2 \\
x & \leq 1
\end{aligned}\right\}
$$

Thus the solutions lie in the interval $[1 / 3,1]$.

Remark Here is how part (b) of Example 7 could have been solved geometrically, by interpreting the absolute value as a distance:

$$
|3 x-2|=\left|3\left(x-\frac{2}{3}\right)\right|=3\left|x-\frac{2}{3}\right|
$$

Thus, the given inequality says that

Figure P. 7 The solution set for Example 7(b)

$$
3\left|x-\frac{2}{3}\right| \leq 1 \quad \text { or } \quad\left|x-\frac{2}{3}\right| \leq \frac{1}{3}
$$

This says that the distance from x to $2 / 3$ does not exceed $1 / 3$. The solutions for x therefore lie between $1 / 3$ and 1, including both of these endpoints. (See Figure P.7.)

[^0]: 1 How do we know that $\sqrt{2}$ is an irrational number? Suppose, to the contrary, that $\sqrt{2}$ is rational. Then $\sqrt{2}=m / n$, where m and n are integers and $n \neq 0$. We can assume that the fraction m / n has been "reduced to lowest terms"; any common factors have been cancelled out. Now $m^{2} / n^{2}=2$, so $m^{2}=2 n^{2}$, which is an even integer. Hence, m must also be even. (The square of an odd integer is always odd.) Since m is even, we can write $m=2 k$, where k is an integer. Thus $4 k^{2}=2 n^{2}$ and $n^{2}=2 k^{2}$, which is even. Thus n is also even. This contradicts the assumption that $\sqrt{2}$ could be written as a fraction m / n in lowest terms; m and n cannot both be even. Accordingly, there can be no rational number whose square is 2 .

